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SUMMARY 

The spectrum of a phase modulated carr ier  is analyzed. The 
analysis is based on the RMS phase deviation only, so that knowl- 
edge of the frequency spectrum of the modulating time function is 
not required. Upper and lower limits of the amplitudes of the spec- 
tral components of the phase modulated carr ier  are derived at, the 
main emphasis being given to the component of carr ier  frequency. 
The usefulness and simplicity of the equations derived at is demon- 
strated in the analysis of a carrier phase modulated by a pseudo 
random code and two phase modulated subcarriers. The calcula- 
tions a re  carried out without introducing approximations such as 
substituting voice or other information by a single frequency. a 
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APOLLO USB-SYSTEM 

Multisignal Phase Modulation Problems and Solutions 

INTRODUCTION 
c 

For  the Apollo missions, both tracking and communication will be handled 
by the Unified S-band System (USBS). In this system, one main car r ie r  is phase 
modulated by a base band consisting of a pseudo random range code and a number 
of phase modulated subcarriers [l]. In this paper the frequency spectrum of the 
modulated carr iers  is analyzed. Special attention is given to the calculation of 
the main car r ie r  component because the success of the USBS hinges on the capa- 
bility of the receivers to lock on to and track the main car r ie r  component. To 
analyze the power in the main car r ie r  component under worst case conditions is 
therefore of vital importance. Although the analysis presented here was made 
with the USBS in mind, the results are, of course, applicable to any system utiliz- 
ing multisignal phase modulation. 

. 

8 

The conventional way of analysis of multisignal phase modulation is to expand 
the base band into a Fourier series and then to treat the problem as  multi-tone 
phase modulation. A number of papers (see Reference [3], [4], [SI, and [6]) have 
been written about multi-tone phase modulation. Unfortunately, the equations 
derived at are long and hard to  evaluate as  soon as the modulating time function 
consists of more than two or  three frequency components. Another drawback of 
this method is that it is often difficult o r  impossible to expand the base band into a 
Fourier series. This is the case for a pseudo random code or  a phase modulated 
subcarrier, which is modulated with an unknown periodic time function. However, 
the power of a pseudo random code is constant and the power of a phase modulated 
subcarrier is constant and independent of the modulating time function.* The 
power in the base band is thus easily calculated and is independent of the infor- 
mation modulated onto the subcarriers, A method of analysis of phase modula- 
tion, based on the power of the modulating time function (= base band) rather on 
the Fourier spectrum, has therefore been developed and is presented in this 
paper. With this type of analysis the exact value of the main carr ier  component 
cannot be calculated, but upper and lower limits can be calculated. This is not a 
limitation, but an advantage, because the upper and lower limits, rather than any 
particular value in between, a r e  essential for circuit design and system analysis. 

*This is  only true i f  the Fourier spectrum of the modulating time function does not contain a 
component of the carrier frequency. 
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The analysis has been based on complex Fourier analysis because of the 
simplicity in derivations and lucidity of results obtained with the complex method. 
A brief recapitulation of complex analysis of phase modulation* is given in the ' 

next chapter, which may be omitted by the reader completely familiar with the 
subject. 

Only phase modulation has been considered in this paper because frequency 
modulation with f ( t )  is identical to phase modulation with J f (t) d t. The 
integral of a function is more well behaved than the function itself and some time 
functions can therefore only be treated with phase modulation and not with fre- 
quency modulation. An example is the frequently used phase modulation with a 
square wave, also known as  phase shift modulation. The concept of phase modu- 
lation thus completely covers frequency modulation. 

. 

. 
% 

~~~ 

*The complex analysis of phase modulation is  based on lectures given by Professor E. Lofgren in 
1952 at the Royal Institute of Technology, Stockholm, Sweden. 
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l V  

2. General Analysis of Multi-Tone Phase Modulation 

In this chapter we will analyze the case where a car r ie r  C O S  (ao t t $,,) is 
phase modulated by a time function f ( t  ). We assume that f ( t )  can be expanded 
in a Fourier series 

where N may go to infinity. The D-C o r  average term of f ( t )  is included in the 
phase angle $,, of the car r ie r  and f (t) may thus be considered to be an A-C 
signal. If we normalize the peak amplitude of the modulated car r ie r  to 1, then 
the instantaneous amplitude of the modulated car r ie r  is 

o r  

v = cos 

Using complex notation, we obtain 

where 

v = Re{V)  

In appendix A it is shown that V can be expanded in an infinite series 

(2-4) 
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(2-5) 

where J, are  the Bessel functions of the first kind and orderm . This is a very 
general expression fo r  the frequency spectrum resulting from a phase modulation. 
Unfortunately, it is very difficult to obtain any information about the amplitudes 
of the frequency spectrum from Equ. (2-5) if N is a large number. In the following 
paragraphs, Equ. (2-5) will be analyzed for some cases of practical importance 
and simplified and useful expressions will be derivod at. Before going into this, 
let us apply Equ. (2-5) to two special cases: 

Case A Let f ( t )  be a sinusoidal function 

For this case Equ. (2-5) reduces to 

Using the relation [71 

we can rewrite Equ. (2-7) 

4 

. 

(2-6) 

(2-7) 

(2-8) 
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c 
where Xe denotes summarization over even m and 1, denotes summarization 
over odd m. Equation (2-8) can be interpreted by a phasor diagram utilizing 
the complex plain as shown in Fig. 1. The parenthesis in Equ. (2-8) is represented 
by the complex quanity Z , which is composed of infinitely many real and imagi- 
nary components. Z is of magnitude I due to the normalization introduced in the 
beginning of this c h p t e r  and performs an angular oscillation within the limits 
&$. The factor e " 0 )  is represented by the rotating time line t. In Equ. 
(2-2), we assumed a cosine function for v and v is therefore the projection of 
z on the time line t . If we instead had assumed a sine function in Equ. (2-2) 
then v would be the projection of 2 on a line perpendicular to the time line t . 

k 
I 

Irn t 
/ 

/ 
/ 

/ 
/ 

\ 
'. 

Figure I-Phosor diagram for phase modulation of a carrier_wo with one sinewave of 
angular frequency p and amplitude 4 
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Case B. Let f ( t )  be a subcarrier ul phase modulated with 8, sin pt, thus 

The series*expansion of Equ. (2-10) is the same as Equ. (2-7) and we therefore 
have 

Equ. (2-11) is of the same form as Equ. (2-1) with 

+, = $1 

Substitution into Equ. (2-5) yields 

. 

where 

a0 = peak phase swing of main carrier modulation 

&, = peak phase swing of subcarrier modulation 

6 



wo = angular main car r ie r  frequency 

= angular subcarrier frequency 

p = angular frequency of subcarrier modulation 

= constant phase angle 

I -  , ”  This equation gives the complete frequency spectrum of a carr ier ,  which is phase 
modulated with a phase modulated subcarrier. 

The complexity of Equ. (2-5) and (2-12) indicate that a better method of 
analysis is desirable. In the next chapters the analysis will be based on the 
RMS value o r  average power 4 rather than on the Fourier spectrum of the 
modulating time function. 

7 
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3. Phase Modulation with Harmonically Unrelated Frequencies 

If the multiplications of the sums in Equ. (2-5) are carried out, an cxpression 
of the form 

is obtained, where 

W 

J 

(3-3) 

= a n g u l a r  f r e q u e n c i e s  of t he  m o d u l a t i n g  f u n c t i o n  f ( t )  

M n  = a n  i n t e g e r ,  i n c l u d i n g  0 

If w i  is always different from zero if  any one o r  several of the integers M n  a r e  
different from zero, then the angular frequencies a re  harmonically unre1ntc.l.l. 
We see from Equ. (3-1) that in this case the amplitude of the component of c ’ n r -  
rier frequency is A , .  From Equ. (2-5) we see that m i  is zero only for ni - 0 
(provided, of course, thzt w 1  + n p  j 0, see footnote on page 1). The carr ier  
component amplitude can thus be obtained from Equ. (2-5) by putting rn = 0 ,  
which leads to Equ. (3-2). An example of a time function with harmonically 
unrelated frequency spectrum is a subcarrier phase-modulated by 6l s i n  p t  . 
The frequency spectrum for this time function was given by Equ. (2-12). The 
carrier component is obtained by putting m = 0 in Equ. (2-12). The resulting 
expression can be brought in the same form as Equ. (3-2) after change of 
variables. 

. 
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If, on the other hand, the frequencies are harmonically related, the amplitude 
of the carr ier  component is no longer given by Equ. (3-2). This case will be 
analyzed in the next chapter. 

If the power of the modulating time function (= base band) is 4 , then 

Under this condition it is shown in Appendix By Equ. (B-12) and (B-15), that 

(3-4) 

(3-5) 

provided all cpn 5 5.1 for N 1 2. If N = 1 then equ. (3-5) reduces to an identity, 
which is true for all values of yn .  It can further be shown, (see Appendix B) that 

J,( fi $)is always positive in the region 0 L fi 4 5 2.4048, where 2.4048 is the 
first zero of Jo(JZ +), and we can combine Equ. (3-2), (3-5), and (3-6) into 

9 



For fi 4 > 2.4048 we obtain instead 

(3-8) 

2.4048 fi 4 5.1 fi J 

The upper limit for 6 is obtained from equ. (3-4) for N = 2 and 'p, = 5.1. 

Equations (3-7) and (3-8) thus show that upper and lower limits of the carr ier  
component can be calculated if  only the power of the modulating time function is 
known. The lower limit is obtained if the modulating power is contained in one 
modulating frequency and the upper limit is obtained if the power is divided 
equally among infinitely many modulating frequencies. 

The Equ. (3-7) and (3-8) are  shown graphically in Fig. 2. It is seen that for 
4 < 1 the upper and lower limits a re  very close together. The amplitude of the 
carrier component varies therefore only very little in this region if the frequency 
spectrum of the modulating time function is changed. 

The reduction of the main carrier component due to modulating is commonly 
referred to as modulation loss. The modulation loss L, for the carrier can be 
defined as the ratio of total output power and the power of the carr ier  component 
Expressing L, in db we obtain 

db Total output power 

Carrier component power 
L, = 10 log 

Using the limits for the carrier component given in Equ. (3-7) and (3-8) we obtain 

for 

d)2 > L, > 10 l o g  e 1 
- - 10 l o g  

J,(fi 4)2 

0 5 a 4  5 2.4048 

10 

(3-7a) 
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RADIANS 

Figure 2-Upper limit A0 and lower limit A0 ,,,in of the carrier component amplitude Ao. 
The carrier is phase modulated with RMS phase swing q5 by a time function f (t), whose 
frequency spectrum i s  not harmonically related. 

and 

whichever is smaller 
(3-8a) 

for 

2.4048 5 6 q5 5 5.1 fi 

Equ. (3-7a) is shown graphically in Fig. 3. The graphs in Fig. 3 show both the 
upper and lower limit for the modulation loss as a function of RMS phase devi- 
ation 4. All information needed for analysis of the main carr ier  component is 

11 



+RADIANS 

Figure 3-Upper and lower limits of modulation loss L, for a 
carrier phase modulated with RMS phase swing 6 

thus contained in these graphs. The use of the graphs in analysis work will be 
demonstrated in Chapter 5. 

I 

It should once more be pointed out, that the results of this paragraph are 
valid only if the modulating frequencies a re  harmonically unrelated (see Equ. 
(3-3)). Modulation with harmonically related frequencies is treated in the next 
chapter . 
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4. Phase Modulation with Harmonically Related Frequencies 

4 If the modulating frequencies a re  harmonically related, we can find integers 
Mn which are not all zero, so that 

I '  
This implies that in calculating the carrier component from equ. (2-5) more 
terms then 

N 

A, = I Jo ((fn) I 
1 

have to be included. For example, assume that the modulating function consists 
of three frequency components 

f ( t )  = cpl s i n ( w t  t +1) t rp2 s in(2wt  t +2) (4-2) 

t rp3 s i n ( 3 w t  t+3) 

In this case the amplitude of the carrier component is 

In the derivation, Bessel functions of higher order than 5 have been neglected. 
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Equ. (4-3) shows that with only three harmonically related modulating fre- 
quencies the expression for the carr ier  component already becomes a monstros- 
ity and a better method of analysis is desirable. If the modulating frequencies 
are harmonically related, they can be combined into a periodic function f ( t )  

f ( t )  = f ( t  + T) 

The complex notation for the modulated carr ier  is 

V = e  J ( W ~ t + $ ~  ) , j f (  t ) (4-4) 

If f ( t  ) is periodic, then ej ( ) is also periodic and the carr ier  component A, 
can be found by complex Fourier analysis 

T 
A, = (  d t  

Because le' ( 1 - < 1 the max value of A, is 

< 1  A, rnax - 

This max value is, for instance, obtained if f ( t )  
width T as shown in Fig. 4, and we obtain 

lim A, = 1 
r-. 0 

independent of the RMS phase deviation 4 .  

It has been proven in Appendix C that 

A, 2 cos  4 

where 4 is the RMS phase deviation, thus 

(4-5) 

(4 -6)  

is a narrow square pulse of 

(4-7) 

(4-8) 

14 



Figure 4-Narrow pulses for which A, = A, m o x  = 1  i f  7 + 0  

The proof holds true if 

I f ( t )  I 5 1.432 7~ 

and 

4 - < 1.432 rr 

(4-9) 

(4-10) 

Observing that cos 4 becomes negative for 6 > n/2 we can combine Equ. (4-6) 
and (4-8) to 

and (4-12) 

It is also shown in Appendix C that A, 
constant amplitude 

occurs if f ( t )  is an A-C signal with 

I f ( t>  I = 4  

f ( t )  dt = 0 

(4-11) 

as illustrated in Fig. 5. 

15 



+qJ 

0 

-+ 

and 

Figure 5- Example of periodic time. function f(t) for which I f  (t) I = 4 and 

f(t)  dt = 0, so that A, = A, = cos + 

The modulation loss Lm for the carr ier  component is thus 

> L  > O  f o r + < -  10 l o g  cos2 4 - m -  

- "1 

I 
(4-13) 

L > O  f o r + > -  
- 2  " J  m -  

Equ. (4-13) is shown graphically in Fig. 6. For comparison, also the modulation 
loss for the harmonically unrelated case is shown with dotted lines. We see that 
the upper and lower limits for the harmonically unrelated case a re  much closer 
together than for  the harmonically related case. It is therefore of importance to 
distinguish between the harmonically related and unrelated case, especially for 
larger values of 4. All A-C square waves, including pseudo random codes, and 
most amplitude limited signals satisfy Equ. (4-11) and must therefore be treated 
as harmonically related and the solid curves in Fig. 6 apply. An example where 
the modulating time function consists of both harmonically related and unrelated 
frequencies is treated in Chapter 5. 

16 



0 0.2 0.4 0.6 0.8 1.0 1.2  1.4 1 .6 1.8 
RADIANS 

Figure &Upper and lower limits of modulation loss L, fora carrier phase modulated 
with RMS phase swing 4 
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5. Applications 

Example 1 

As an example, let us analyze the case where a carrier is phase modulated 
with a time function consisting of a pseudo random code fl(  t) with amplitude 
and two phase modulated subcarriers f2( t) and f3( t) with peak phase swings 4, 
and a3 respectively. The total modulating time function f(t) is thus 

f ( t )  = f,(t) t f,(t) t f,(t) (5-1) 

We are interested in calculating the amplitude of the main carrier component q, 
for tracking purposes. Of interest are also the subcarrier components in the 
spectrum of the main carr ier ,  i.e., w, f W ,  and w ,  f w3 where W ,  and w3 are 
the angular frequencies of the subcarriers. We want to know the minimum of 
the main carrier components in order to insure receiver lock under worst con- 
ditions and the maximum of the subcarrier components in order to compute the 
risk of locking on to them instead of the main carrier. 

The phase modulated main carr ier  can be written 

The Fourier expansion of the factor e' I (  has a D-C component, whose 
magnitude A,, is given by Equ. (4-8) 

A,, = - 4, (5-3) 

a n d e  J 3' have their j f 2 ( t )  

and A,, min given by Equ. (3-7) 
because f,(t) is a square wave. The factors e 
minimum D-C components A,, 

It is assumed that 4, < n / 2 ,  a2 < 2 . @ / J j ,  and a3 < 2.40/fi so that Equ. (3-7) 
and (4-8) a re  applicable. If V given by Equ. (5-2) is expanded in a series, the 
coefficient for ej(wot ' will be 

18 



i 

. 

and the minimum carr ier  component is thus 

A0 min A01 min A02 min ‘03 min 

or  

(5-6) 

The maximum modulation loss Lm max corresponding to A, min is found from 
Fig. 6. With 

+1 ~ 0 . 6  rad 

& = & = 1.22 rad 

we obtain 

= 1.7 dB Lml max 

Lm2 max = 3.6 dB 

L = 3.6 dB m3 max 

and thus Lm max = 8.9 dB 

A,, etc. The minimum modulation loss is ,  according where Lml corresponds to 
to Fig. 6 ,  L, m i n  - - L, max = 1.7 dB 

= 3.25 dB ‘2 min 

= 3.25 dB ‘3 min 

= 8.2 dB L m  min 

19 



The modulation loss for the main carr ier  will thus vary between 8.2 and 8.9 dB 
depending on the subcarrier modulation. Note that Lm max is obtained for un- 
modulated subcarriers and Lm m i n  for modulated subcarriers. 

It has been assumed in the above derivation that the frequencies of f , ( t )  are  
harmonically related to each other and that the frequencies of f , ( t )  are  not har- 
monically related to each other a s  well a s  the frequencies of f , ( t ) .  In addition, 
Equ. (5-5) is only true if  none of the frequencies of f , ( t )  are harmonically re- 
lated to the frequency f ,( t )  or  f s( t )  and the frequencies of f 2( t )  are  not har- 
monically related to the frequencies of f3( t ) .  

If the frequencies are  harmonically related the total RMS phase swing can 
be computed by 

4 
2 2 (5-7) 

and the carrier amplitude is then given by Equ. (4-8) 

A, r n i n  = C O S  4 (4-8) 

This is the absolute worst case. Using the same numbers a s  before we obtain 

? 

. 

1 1 
2 2 

4 ~ 1 0 . 6 ~  t - 1.22, t - 1.22, = 1.363 r a d  

and from Fig. 6 

= 13.8 dB rn max worst c a s e  
L 

which is 4.9 dB more than the Lm max computed under the assumption that the 
subcarrier and pseudo random code frequencies are  harmonically unrelated. 
This example shows the importance of distinguishing between the harmonically 
related and unrelated case and of choosing suitable subcarrier frequencies. 

Let US also compute the subcarrier components in the spectrum of the modu- 
lated main carrier. 

20 



The amplitude A, of the frequency component w, f W, is 

where 

is obtained from Equ. (A-11) in Appendix A, and where rp, a re  the coefficients 
in the Fourier expansion of f,( t) . Again, Equ. (5-8) holds true only if the above 
assumption about the harmonic relation of the frequency components hold true. 

Because f , ( t )  is a square wave, A,, is constant. A,, max is obtained for 
rp, = fi 4, and all other 'p, = 0, thus 

42 -2 = e  2 
max 

according to Equ. (3-7). Hence 

4 - -  
2 

'2 max = A,, J 1 ( a  4,) e 

The ratio of A, max to A, is thus 

(5 -9) 

(5-10) 

21 



and is obtained for subcarrier w2 unmodulated and subcarrier w3 modulated. 
With the same numbers as before for  c $ ~ ,  a2 ,  and J3, we obtain 

‘2 max - = 0.794 = -2.0 db 
A0 m i n  

The subcarrier components (do f o12 o r  w o  f G J ~  may thus only be 2 db below 
the main carr ier  component CC! o. 

Example 2 

Assume that the RMS phase swing 4 is changed. How much does the mod- 
ulation loss L,,, change? 

(5-11) 

(5-12) 

Again we consider the case where the modulating time function consists of 
a pseudo random code with RMS phase deviation 41 and two subcarriers with 
RMS phase deviation q52 and + 3  a s  in example 1. If the phase deviations have 
the same relative change 8 ,  we obtain 

22 

For the harmonically related case we have (worst case) 

Lm = -20 l o g  c o s  + 
(4  5 ;) 

Differentiation yields 

(IL”, - = 2 0 ( l o g  e )  t a n  q5 
d d  

d ld rad  

For the harmonically unrelated cases we have (worst case) 

Lm = -20 l o g  Jo(V“2q5) 

and after differentiation 

, 



h 

T 
4 + 

-@ 

A41 = 416 

A 4 2  = 4 2 6  

A 4 3  = 436 

and from Equ. (5-11) and (5-12) to a first degree approximation 

Lm1 = 8.69 +l(tan + 1 )  6 d b  

t 

(5-13) 

(5-14) 

Assuming the worst case with all ALm 1-3 having the same sign, we thus obtain 

for 
AL, = ALml + AL,, = AL,, = 206 db 

+1 = 0.6 rad  

a+, = = 1.22 rad  

ExamDle 3 

What is the spectrum of a phase modulated carrier,  if f (t) is a symmetric 
square wave G(t )  as shown in Fig. 7 ?  

Figure 7-Symmetric square wave 
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The modulated carrier is 

e''( t ,  is a periodic function with period T and we can therefore expand e''( 
into a complex Fourier series 

where 

and hence 

s i n  nrr cos  q-5 1 - (-1)" c =  s i n  q5 nrr ' nn 

Using complex notations we can thus write the modulated carr ier  

(5-12) 

(5-13) 

(5-14) 

where &, denotes summation over odd n only. 

This example demonstrates that it is easier in some cases to perform the 
complex Fourier analysis, Equ. (5-13), without expanding the modulating function 
into a Fourier series. Another example for which this is true, is a symmetric 
triangular modulating time function with peak amplitude 5 and period T. The 
complex Fourier expansion yields 
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6. Generalizations 

So far the analysis has been concentrated on the component of carr ier  fre- 
quency. In this chapter an outline will be given how to analyze the other com- 
ponents in the spectrum. The harmonically unrelated and related cases will be 
treated separately as before. 

A. The Harmonicallv Unrelated Case 

c 

Let us analyze the component of frequency w,, .e w i ,  where wi is given by 
Equ. (3-3). 

wi  = f M l w l  f M 2 w 2  f - 0 -  f M n w n  f * . *  f M N w N  

wn = angular frequency components of modulating function f(T) 

Mn = integers, including 0 

The amplitude A i  is obtained from Equ. (2-5) 

where 'p, = the amplitude of component an 

If all Mn = 0 then A i  = A,,. This case has been treated earlier. We therefore 
assume here that not all M, a re  zero. The lower limit, A i  
cause if  M # 0, then 

is zero, be- 

The maximum of Ai may be calculated using Lagrange's multiplier with the 
side condition 

25 



We obtain N equations 

Performing the differentiation yields 

Together with (6-2), we have N + 1 equations, which is sufficient to eliminate 
the Lagrange's multiplier h and solve for all 'p,. Insertion in Equ. (6-1) will 
yield Ai m a x .  

B. The Harmonically Related Case 

If the modulating time function f ( t )  is periodic with periodicity T, then a 
complex Fourier analysis of the modulated carr ier  is possible, resulting in 

where 

For some time functions such as square waves, triangular waves and sinusoidal 
waves, Cn is easy to evaluate. This is demonstrated in Chapter 5, Example 3. 
Our problem is to find f ( t )  such that ICn I has a maximum o r  minimum. For 
n # 0 we have 

C = o  n min 

because f ( t)  can be chosen so that all the power is in C, and therefore none in 
has not been established so far. The problem is to C,. The upper limit, C 

find f ( t ) ,  subject to the condition 
n max 

[ f ( t )2d t  = + 2  
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such that ICn/ given by Equ. (6-5) has  a maximum and to calculate that 
maximum. 

The work is continuing along the above scheduled outlines (A) and (B) and 
more complete results will be published a s  soon as they are  available. 

i 

Another interesting generalization can be obtained from the fact that f ( t )  
may not only be expanded into a Fourier series, but into any ser ies  consisting 
of orthogonal functions, provided, of ccurse, that the set is complete. Let the 
orthogonal functions be g, ( t )  

The modulated carr ier  is then 

each factor e""' gn (t)) can be expanded in a complex Fourier series 

u 
mt-m 

and 

If the gn(t ) ' s  are  sinusoidal functions, then the C n m l s  are  Bessel functions. If 
the g n ( t ) ' s  are square waves, the C n m l s  a re  sine functions as shown in Chapter5, 
Example 3. An analysis of phase modulation without involving Bessel functions 
is thus possible. 
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7. Conclusions 

It has been demonstrated that upper and lower limits of the spectral ampli- 
tudes of a phase modulated carr ier  can be calculated if the frequency spectrum 
of the modulating time function is not known and only the RMS phase deviation 
(= RMS of modulating time function) is known. Calculations can thus be carried 
out without introducing approximations such as substituting voice o r  other infor- 
mation by a single frequency. In addition, upper and lower limits a r e  generally 
more important in circuit design and systems analysis than any value in between 
the limits, which exists only under very special conditions. The method is also 
suitable for stability and drift analysis, i.e., to analyze the change in the spec- 
trum of modulated carrier if the phase deviation changes. 

5. 

i 
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APPENDIX A 

Phase Modulation with with MultiDle Freauencies 

A carr ier  with angular frequency w0 is phase modulated with N signals of 
angular frequency wn and amplitude cp . The instantaneous normalized ampli- 
tude v of the car r ie r  is 

o r  with complex notations 

which also can be written 

Each of the factors is a periodic function in t and can therefore be expressed 
as a complex Fourier series 

Substituting U t  .t t,!~ by 8 we obtain 

(A-4) 
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where the complex constants Cm are  given by 
t 

(A-6) 

From reference [71 we obtain 
. 

where Jm(q) is the Bessel function of the first kind and order m. Hence 

and 

m t m  
j d a t  +$) = J,((f)e 

jCp s i n ( a t + $ )  e 
m=-m 

Subs,,,Jtion into Equ. (A-3) finally yields 

The carrier amplitude A ,  is obtained for m = 0, thus 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

(A-11) 

provided that the angular frequencies wn are not harmonically related. Under 
this condition the amplitude Ank for the frequency component W, f nuk is 

(A-12) 

provided that n o k  cannot be obtained by adding o r  subtracting multiples of the 
other frequencies: 
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n q  f M, w ,  f M, w z  f M3u3 f - . 
where M, etc are integers. 

(A-13) 

3 
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APPENDIX B 

The problem is to find maxima and minima of 

where the independent variables 'pn a r e  subject to the condition 

Using the method of Lagranges multiplier, we obtain - 

(3 -3) 

(3 -4) 

where 'pk and cp are  any two of the variables 9,. Observing that .e 

we obtain 
i 

I 
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and after elimination of A and A, 

4 
I -  

f 

The obvious solution is 

Because cpk and 
thus an extreme 

cp 
value for 

were arbitrarily chose, Equ. (B-4) holds for all Vn. A, has .e 

valid for all n .  We still need to show that Equ. (B-3) has only one solution and 
we have to determine whether the extreme value of A, is a maximum, minimum 
o r  sadelpoint. By plotting 

as is done in Fig. 8, we see that 

y = constant 

has only one solution cp <_ 5.1. By limiting 4 to 

N 5.1  < 5.1 45- - 
fi-fi 

Equ. (B-3) is thus limited to only one solution for all positive values of the 
integer N . 

In order to determine the type of extreme value of A,, we study A, in the 
neighborhood of cpn = yo by putting 

'9, = cp, + E" (B-7) 
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where en is an arbitrarily small quantity. From Equ. (3-4) we obtain 

t E : )  = 42 

or 

The expamion of Jo('pot en) up to second order terms yields 

Taking the logarithm of Equ. (3-3) yields 

and substituting Jo(y,) from EN. (B-9) 

E ; + .  . . 1 
(B-10) 

For any I x I < I the logarithm 4 n < l  - x) can be expanded in a series 

and Equ. (B-10) can therefore be written, including up to second order terms 

.en A, = N $n(J,(y,)) E,, 

J , ( ~ o )  n-1 



n =N 
- c  €: 

A, z e n - l  [Jo ('Po)IN 

where C is a positive quantity. The extreme value is 
All 'p, a re  equal at the maximum and we thus have 

AO m a x  - < N-a l i m  (J"(fi 4)) 

36 
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Substituting Zen from Equ. (B-8) yields 

Using the identitics 

we obtain 

The brackets [ 1 in front of 
positive for 1 yo 1 

is thus positive for I yo I 1. 1 . [ ] is also 
1, which can be shown in the following way: 

For yo = 0 we find [ 1 = 0. 

and 

for I yo I 5 I . A s  [ ] is an even function of yo, we thus conclude that [ ] 1. 0 
for all yo. 

Hence, 

where C is a positive quantity. The extreme value is 
All 'p, a re  equal at the maximum and we thus have 

36 
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therefore a 

N 

(B-12) 

maximum. 

(B-13) 



Expanding J, (E 4) into a series yields 

. . .  J,({cP) = 1 - - t  fl  - -  44 
2N 1 6 N 2  

we also have 

(B-14) 

with 

we obtain 
42 -- 42 44 - -  + - -.  . . 

l i m  (J, (E +))N = l i m  e 2 16N = e  2 (B-15) 
N-00 N+CQ 

The minimum value of A, has to be on the boundary because there was only one 
extreme value inside the boundary. The minimum value thus occurs for cpk = fi 4 
and all other cp,  = 0. Hence 

(B-16) 

for 
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APPENDIX C 

The problem is to find a periodic function f ( t )  such that A, has a mini- 
mum if  A, is given by 

and where f ( t )  is subject to the conditions 

and 

f ( t )  d t  = 0 

+ [ f ( t ) 2  d t  = + 2  

using 

e J x  = c o s  x t j sin x 

Equ. (C-1) can be re-written 

and from 

we obtain 
c 

T 

Ao>L T I[ cos f ( t )  d t l  2 f  I, cos f ( t )  d t  (C -4) 



1 

The integral can be considered to be the limit case of a sum 

$ [ c o s  f ( t )  d t  = lirn - cos  f n  
n = l  

where 

I 
n 
N 

f n  = f ( t )  a t  t = - T  

as shown in Fig. 9. For the side condition in Equ. (C-3) 

---b 

f ( t ) 2  dt  = lirn 1 C f,2 = q52 
T I’ N”D N 

T 

I+ A + = i i J  

Figure 9-Approximation of f(t) by fn 
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is obtained. We consider all the f, to be independent variables and apply the 
method of Lagrange Multipliers 

L { c c o s f n t A ( c  f n  f : - $ 3 } = 0  

and thus 

After elimination of X 

which has only one solution 

I -sin f, t 2X f ,  = 0 

1 -sin f t  t 2A f 4  = 0 

(C -7) 

(C-10) 

for 

I f , /  3 1 . 4 3 2 ~  If41 5 1 . 4 3 2 ~  

as can be seen from Fig. 10. 

From (C-6) follows that 

f" = +I$ (C-11) 
c 

Where half of the f n  are positive and the other half are negative in order to 
satisfy Equ. (C-2). It thus follows that f ( t )  is an A-C signal with constant 
amplitude $. For f ( t )  = + we obtain 

T 
A, =L I, COS $ d t  = C O S  4 T 

(C-12) 
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i 

s in f 
f 

Figure 10- y = - ; y = constant h a s  only one  root I f  15 1.432 n 

The next step i s  to show that cos 4 is a minimum and not a sadelpoint or max- 
imum. Add a small time function E to +2 so that 

f ( t )2  = 42 t E (C-13) 

From the side condition (C-3) follows 

I,' Edt = O  

Expanding cos f (t) into a series and inserting in Equ. (C-4) yields 

(C-14) 

1 A,?.! [ [ i - l ( + 2 t e ) t 1 ( + 2 t t ) 2 - - ( + 2 t ~ ) 3 t  1 1 ... d t  
T 2 !  4 .  6 !  
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or 

1 3  - --  + 2  ...I e 2  d t  
4 !  6 !  

(C-15) 

A 

including up to € 2  terms. The E term vanishes due to Equ. (C-14). Thus 

(C-16) 

where 

( n t l )  ( n t 2 )  
$2 + . . .  ( -1 )"  

4 !  6 !  2 ( 2 n t  4)!  
(C-17) 

It is easily shown that 

K = -  1 (- s i n 4  - c o s + )  

8 o2 4 
and 

K L O  

for 4 I 1.43277. Thus A, 2 cos 4, for 14 I 1. 1 . 4 3 2 ~ .  
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